Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • Function Calling Workflow
  • Supporting Models

Was this helpful?

Edit on GitHub
  1. Guides
  2. Getting Started

Function Calling

Get the LLM to interact with external APIs!

PreviousTackling Rate LimitingNextImage Generation

Last updated 1 year ago

Was this helpful?

As described in the , LLMs are now good at generating outputs that follow a specified syntax. We can combine this LLM ability with their reasoning ability to let LLMs interact with external APIs. This is called Function (or Tool) calling. In simple terms, function calling:

  1. Informs the user when a question can be answered using an external API

  2. Generates a valid request in the API's format

  3. Converts the API's response to a natural language answer

Function calling is currently supported on select models on Anyscale, Together AI, Fireworks AI, Google Gemini, and OpenAI. Using Portkey, you can easily experiment with function calling across various providers and gain confidence to ship it to production.

Let's understand how it works with an example:

We want the LLM to tell what's the temperature in Delhi today. We'll use a "Weather API" to fetch the weather:

import Portkey from "portkey-ai";

const portkey = new Portkey({
  apiKey: "PORTKEY_API_KEY",
  virtualKey: "ANYSCALE_VIRTUAL_KEY",
});

// Describing what the Weather API does and expects
let tools = [
    {
        "type": "function",
        "function": {
            "name": "getWeather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state",
                    },
                    "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                },
                "required": ["location"],
            },
        },
    }
];

let response = await portkey.chat.completions.create({
    model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
    messages: [
        {"role": "system", "content": "You are helpful assistant."},
        {"role": "user", "content": "What's the weather like in Delhi - respond in JSON"}
    ],
    tools,
    tool_choice: "auto", // auto is default, yet explicit
});

console.log(response.choices[0].finish_reason) 

Here, we've defined what the Weather API expects for its requests in the tool param, and set tool_choice to auto. So, based on the user messages, the LLM will decide if it should do a function call to fulfill the request. Here, it will choose to do that, and we'll see the following output:

{
    "role": "assistant",
    "content": null,
    "tool_calls": [
        "id": "call_x8we3xx", 
        "type": "function", 
        "function": {
            "name": "getWeather", 
            "arguments": '{\n  "location": "Delhi, India",\n  "format": "celsius"\n}'
        }
    ],
}

We can just take the tool_call made by the LLM, and pass it to our getWeather function - it should return a proper response to our query. We then take that response and send it to our LLM to complete the loop:

/**
* getWeather(..) is a utility to call external weather service APIs
* Responds with: {"temperature": 20, "unit": "celsius"}
**/

let weatherData = await getWeather(JSON.parse(arguments));
let content = JSON.stringify(weatherData);

// Push assistant and tool message from earlier generated function arguments
messages.push(assistantMessage); //
messages.push({
    role: "tool", 
    content: content, 
    toolCallId: "call_x8we3xx"
    name: "getWeather"
});

let response = await portkey.chat.completions.create({
  model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
  tools:tools,
  messages:messages,
  tool_choice: "auto",
});

We should see this final output:

{
    "role": "assistant",
    "content": "It's 30 degrees celsius in Delhi, India.",
}

Function Calling Workflow

Recapping, there are 4 key steps to doing function calling, as illustrated below:

Supporting Models

Model/Provider
Standard Function Calling
Parallel Function Calling

mistralai/Mistral-7B-Instruct-v0.1 Anyscale

✅

❌

mistralai/Mixtral-8x7B-Instruct-v0.1 Anyscale

✅

❌

mistralai/Mixtral-8x7B-Instruct-v0.1 Together AI

✅

✅

mistralai/Mistral-7B-Instruct-v0.1 Together AI

✅

✅

togethercomputer/CodeLlama-34b-Instruct Together AI

✅

✅

gpt-4 and previous releases OpenAI / Azure OpenAI

✅

✅ (some)

gpt-3.5-turbo and previous releases OpenAI / Azure OpenAI

✅

✅ (some)

firefunction-v1 Fireworks

✅

❌

fw-function-call-34b-v0 Fireworks

❌

gemini-1.0-pro

gemini-1.0-pro-001

gemini-1.5-pro-lates Google

❌

While most providers havve standard function calling as illustrated above, models on Together AI & select new models on OpenAI (gpt-4-turbo-preview, gpt-4-0125-preview, gpt-4-1106-preview, gpt-3.5-turbo-0125, and gpt-3.5-turbo-1106) also support parallel function calling - here, you can pass multiple requests in a single query, the model will pick the relevant tool for each query, and return an array of tool_calls each with a unique ID. ()

Enforcing JSON Schema cookbook
Read here for more info
✅
✅
Function Calling Workflow