Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • Getting Started
  • 1. Install the required packages:
  • 2. Configure your Llama Index LLM objects:
  • Integration Guide
  • Make your agents Production-ready with Portkey
  • 1. Interoperability
  • 2. Reliability
  • 3. Metrics
  • 4. Logs
  • 5. Traces
  • Using Traces in LlamaIndex Agents
  • 6. Continuous Improvement
  • 7. Caching
  • 8. Security & Compliance
  • Portkey Config

Was this helpful?

Edit on GitHub
  1. Integrations
  2. Agents

LlamaIndex

Use Portkey with Llama Agents to take your AI Agents to production

Getting Started

1. Install the required packages:

pip install -qU llama-agents llama-index portkey-ai

2. Configure your Llama Index LLM objects:

from llama_index.llms.openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders


gpt_4o_config = {
    "provider": "openai", #Use the provider of choice
    "api_key": "YOUR_OPENAI_KEY,
    "override_params": { "model":"gpt-4o" }
}

gpt_4o = OpenAI(
    api_base=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        api_key=userdata.get('PORTKEY_API_KEY'),
        config=gpt_4o_config
    )
)

Integration Guide

Here's a simple Google Colab notebook that demonstrates Llama Index with Portkey integration

Make your agents Production-ready with Portkey

Portkey makes your Llama Index agents reliable, robust, and production-grade with its observability suite and AI Gateway. Seamlessly integrate 200+ LLMs with your Llama Index agents using Portkey. Implement fallbacks, gain granular insights into agent performance and costs, and continuously optimize your AI operations—all with just 2 lines of code.

Let's dive deep! Let's go through each of the use cases!

Easily switch between 200+ LLMs. Call various LLMs such as Anthropic, Gemini, Mistral, Azure OpenAI, Google Vertex AI, AWS Bedrock, and many more by simply changing the provider and API key in the ChatOpenAI object.

If you are using OpenAI with CrewAI, your code would look like this:

llm_config = {
    "provider": "openai", #Use the provider of choice
    "api_key": "YOUR_OPENAI_KEY,
    "override_params": { "model":"gpt-4o" }
}


llm = OpenAI(
    api_base=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        api_key="PORTKEY_API_KEY",
        config=llm_config
    )
)
llm_config = {
    provider="azure-openai", #choose your provider
    "api_key": "YOUR_OPENAI_KEY,
    "override_params": { "model":"gpt-4o" }
}

llm = OpenAI(
    api_base=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        api_key="PORTKEY_API_KEY",
        config=llm_config
    )
)

If you are using Anthropic with CrewAI, your code would look like this:

llm_config = {
    "provider": "anthropic", #Use the provider of choice
    "api_key": "YOUR_OPENAI_KEY,
    "override_params": { "model":"claude-3-5-sonnet-20240620" }
}


llm = OpenAI(
    api_base=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        api_key="PORTKEY_API_KEY",
        config=llm_config
    )
)
llm_config = {
    "provider": "bedrock", #Use the provider of choice
    "api_key": "YOUR_AWS_KEY",
    "override_params": { "model":"gpt-4o" }
}

llm = OpenAI(
    api_base=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        api_key="PORTKEY_API_KEY",
        config=llm_config
    )
)

Agents are brittle. Long agentic pipelines with multiple steps can fail at any stage, disrupting the entire process. Portkey solves this by offering built-in fallbacks between different LLMs or providers, load-balancing across multiple instances or API keys, and implementing automatic retries and request timeouts. This makes your agents more reliable and resilient.

Here's how you can implement these features using Portkey's config

{
  "retry": {
    "attempts": 5
  },
  "strategy": {
    "mode": "loadbalance" // Choose between "loadbalance" or "fallback"
  },
  "targets": [
    {
      "provider": "openai",
      "api_key": "OpenAI_API_Key"
    },
    {
      "provider": "anthropic",
      "api_key": "Anthropic_API_Key"
    }
  ]
}

Agent runs can be costly. Tracking agent metrics is crucial for understanding the performance and reliability of your AI agents. Metrics help identify issues, optimize runs, and ensure that your agents meet their intended goals.

Portkey automatically logs comprehensive metrics for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need. For agent-specific observability, add Trace-id to the request headers for each agent.

llm2 = ChatOpenAI(
    api_key="Anthropic_API_Key",
    base_url=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        api_key="PORTKEY_API_KEY",
        provider="anthropic",
        trace_id="research_agent1" #Add individual trace-id for your agent analytics
    )
)

Agent runs are complex. Logs are essential for diagnosing issues, understanding agent behavior, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.

Portkey offers comprehensive logging features that capture detailed information about every action and decision made by your AI agents. Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.

With traces, you can see each agent run granularly on Portkey. Tracing your LlamaIndex agent runs helps in debugging, performance optimzation, and visualizing how exactly your agents are running.

Using Traces in LlamaIndex Agents

Step 1: Import & Initialize the Portkey LlamaIndex Callback Handler

from portkey_ai.llamaindex import LlamaIndexCallbackHandler

portkey_handler = LlamaIndexCallbackHandler(
    api_key="YOUR_PORTKEY_API_KEY",
    metadata={
        "session_id": "session_1",  # Use consistent metadata across your application
        "agent_id": "research_agent_1",  # Specific to the current agent
    }
)

Step 2: Configure Your LLM with the Portkey Callback

from llama_index.llms.openai import OpenAI

llm = OpenAI(
    api_key="YOUR_OPENAI_API_KEY_HERE",
    callbacks=[portkey_handler],  # Replace with your OpenAI API key
    # ... other parameters
)

With Portkey tracing, you can encapsulate the complete execution of your agent workflow.

Improve your Agent runs by capturing qualitative & quantitative user feedback on your requests. Portkey's Feedback APIs provide a simple way to get weighted feedback from customers on any request you served, at any stage in your app. You can capture this feedback on a request or conversation level and analyze it by adding meta data to the relevant request.

Agent runs are time-consuming and expensive due to their complex pipelines. Caching can significantly reduce these costs by storing frequently used data and responses. Portkey offers a built-in caching system that stores past responses, reducing the need for agent calls saving both time and money.

{
 "cache": {
    "mode": "semantic" // Choose between "simple" or "semantic"
 }
}

Set budget limits on provider API keys and implement fine-grained user roles and permissions for both the app and the Portkey APIs.


Many of these features are driven by Portkey's Config architecture. The Portkey app simplifies creating, managing, and versioning your Configs.

PreviousLangchain AgentsNextPhidata

Last updated 9 months ago

Was this helpful?

That's all you need to do to use Portkey with Llama Index agents. Execute your agents and visit to observe your Agent's activity.

1.

To switch to Azure as your provider, add your Azure details to Portkey vault () and use Azure OpenAI using virtual keys

To switch to AWS Bedrock as your provider, add your AWS Bedrock details to Portkey vault () and use AWS Bedrock using virtual keys,

2.

3.

4.

5.

6.

7.

8.

For more information on using these features and setting up your Config, please refer to the .

Portkey.ai
Interoperability
here's how
here's how
Reliability
Metrics
Logs
Traces
Continuous Improvement
Caching
Security & Compliance
Portkey Config
Portkey documentation