Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • Setting Up Your Chatbot
  • Step 1: Define Your System Prompt
  • Step 2: Create a Variable to Store Conversation History
  • Step 3: Implementing the Chatbot
  • Step 4: Append the Response
  • Step 5: Take User Input to Continue the Conversation
  • Complete Example
  • Conclusion

Was this helpful?

Edit on GitHub
  1. Guides
  2. Use Cases

Build a chatbot using Portkey's Prompt Templates

PreviousComparing Top10 LMSYS Models with PortkeyNextContact Us

Last updated 9 months ago

Was this helpful?

Portkey's prompt templates offer a powerful solution for testing and building chatbots. You can easily input your model prompt, adjust settings like model type and temperature, and instantly view outputs. Portkey's robust versioning system ensures that you can experiment freely with your prompts, allowing for easy rollback. Try out new things without the fear of breaking your production. This seamless iteration process allows you to refine your chatbot's performance until you're satisfied.

Setting Up Your Chatbot

Go to .

Click on the Create button. You are now on the Prompt Playground.

Step 1: Define Your System Prompt

Start by defining your system prompt. This sets the initial context and behavior for your chatbot. You can set this up in your Portkey's Prompt Library using the JSON View

[
  {
    "content": "You're a helpful assistant.",
    "role": "system"
  },
  {{chat_history}}
]

{{chat_history}} - will be used in the next step

Step 2: Create a Variable to Store Conversation History

In the Portkey UI, set the variable type: Look for two icons next to the variable name: "T" and "{..}". Click the "{...}" icon to switch to JSON mode.

Initialize the variable: This array will store the conversation history, allowing your chatbot to maintain context. We can just initialize the variable with [].

Note: As your chatbot interacts with users, it will append new messages to this array, building a comprehensive conversation history.

Step 3: Implementing the Chatbot

Use Portkey's API to generate responses based on your prompt template. Here's a Python example::

from portkey_ai import Portkey

client = Portkey(
    api_key="YOUR_PORTKEY_API_KEY"  # You can also set this as an environment variable
)

def generate_response(conversation_history):
    prompt_completion = client.prompts.completions.create(
        prompt_id="YOUR_PROMPT_ID",  # Replace with your actual prompt ID
        variables={
            "variable": conversation_history
        }
    )
    return prompt_completion.choices[0].message.content

# Example usage
conversation_history = [
    {
        "content": "Hello, how can I assist you today?",
        "role": "assistant"
    },
    {
        "content": "What's the weather like?",
        "role": "user"
    }
]

response = generate_response(conversation_history)
print(response)

Step 4: Append the Response

After generating a response, append it to your conversation history:

def append_response(conversation_history, response):
    conversation_history.append({
        "content": response,
        "role": "assistant"
    })
    return conversation_history

# Continuing from the previous example
conversation_history = append_response(conversation_history, response)

Step 5: Take User Input to Continue the Conversation

Implement a loop to continuously take user input and generate responses:

# Continue the conversation
while True:
    user_input = input("You: ")
    if user_input.lower() == 'exit':
        break
    
    conversation_history.append({
        "content": user_input,
        "role": "user"
    })
    
    response = generate_response(conversation_history)
    conversation_history = append_response(conversation_history, response)
    
    print("Bot:", response)

print("Conversation ended.")

Complete Example

Here's a complete example that puts all these steps together:

from portkey_ai import Portkey

client = Portkey(
    api_key="YOUR_PORTKEY_API_KEY"
)

def generate_response(conversation_history):
    prompt_completion = client.prompts.completions.create(
        prompt_id="YOUR_PROMPT_ID",
        variables={
            "variable": conversation_history
        }
    )
    return prompt_completion.choices[0].message.content

def append_response(conversation_history, response):
    conversation_history.append({
        "content": response,
        "role": "assistant"
    })
    return conversation_history

# Initial conversation
conversation_history = [
    {
        "content": "Hello, how can I assist you today?",
        "role": "assistant"
    }
]

# Generate and append response
response = generate_response(conversation_history)
conversation_history = append_response(conversation_history, response)

print("Bot:", response)

# Continue the conversation
while True:
    user_input = input("You: ")
    if user_input.lower() == 'exit':
        break
    
    conversation_history.append({
        "content": user_input,
        "role": "user"
    })
    
    response = generate_response(conversation_history)
    conversation_history = append_response(conversation_history, response)
    
    print("Bot:", response)

print("Conversation ended.")

Conclusion

VoilĂ ! You've successfully set up your chatbot using Portkey's prompt templates. Portkey enables you to experiment with various LLM providers. It acts as a definitive source of truth for your team, and it versions each snapshot of model parameters, allowing for easy rollback. Here's a snapshot of the Prompt Management UI. To learn more about Prompt Management .

click here
Portkey's Prompts Dashboard