Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Provider Endpoints

Completions

PreviousRetrieve Run StepsNextGateway for Other API Endpoints

Last updated 9 months ago

Was this helpful?

Supported providers
  1. AI21

  2. Anthropic

  3. Anyscale

  4. Azure OpenAI

  5. AWS Bedrock

  6. Cohere

  7. Fireworks AI

  8. Novita AI

  9. OpenAI

  10. Together AI

  11. Cloudflare Workers AI

Create Completion

POST /completions

Generate text completions using the selected Large Language Model (LLM).

Portkey automatically transforms the parameters for LLMs other than OpenAI. If some parameters don't exist in the other LLMs, they will be dropped.

SDK Usage

The completions.create method in the Portkey SDK allows you to generate text completions using various LLMs. This method provides a straightforward interface for requesting text completions similar to the OpenAI API.

Method Signature

portkey.completions.create(requestParams[configParams]);
# with only request params
portkey.completions.create(requestParams);
# with request and config params
portkey.with_options(configParams).completions.create(requestParams);

Parameters

  1. requestParams (Object): Parameters for the completion request. These parameters should include the prompt and model, and are transformed automatically by Portkey for LLMs other than OpenAI. Unsupported parameters for other LLMs will be dropped.

  2. configParams (Object): Additional configuration options for the request. This is an optional parameter that can include custom config options for this specific request. These will override the configs set in the Portkey Client.

Example Usage

import Portkey from 'portkey-ai';

// Initialize the Portkey client
const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY",  // Replace with your Portkey API key
    virtualKey: "VIRTUAL_KEY"   // Optional: For virtual key management
});

// Generate a text completion
async function getTextCompletion() {
    const completion = await portkey.completions.create({
        prompt: "Say this is a test",
        model: "gpt-3.5-turbo-instruct",
    });

    console.log(completion);
}
await getTextCompletion();
// Generate a streaming text completion
async function getTextCompletionStream(){
    const completionStream = await portkey.completions.create({
        prompt: "Continuously stream this test",
        model: "gpt-3.5-turbo-instruct",
        stream: true
    });

    for await (const chunk of completionStream) {
        console.log(chunk.content);
    }
}
await getTextCompletionStream();
// Generate a text completion with config params
async function getTextCompletionWithConfig() {
    const completion = await portkey.completions.create({
        prompt: "Say this is a test with specific config",
        model: "gpt-3.5-turbo-instruct",
    }, {config: "custom-config-123"});

    console.log(completion);
}
await getTextCompletionWithConfig();
from portkey_ai import Portkey

# Initialize the Portkey client
portkey = Portkey(
    api_key="PORTKEY_API_KEY",  # Replace with your Portkey API key
    virtual_key="VIRTUAL_KEY"   # Optional: For virtual key management
)

# Generate a text completion
def get_text_completion():
    completion = portkey.completions.create(
        prompt="Say this is a test",
        model="gpt-3.5-turbo-instruct"
    )
    print(completion)

get_text_completion()
# Example with config parameters
def get_chat_completion_with_config():
    completion = portkey.with_options({'config': 'sample-7g5tr4'}).completions.create(
        messages=[{'role': 'user', 'content': 'Say this is a test'}],
        model='gpt-3.5-turbo-instruct'
    )
    print(completion)

get_chat_completion_with_config()
# Generate a streaming chat completion
async def get_chat_completion_stream():
    completion_stream = portkey.completions.create(
        messages=[{'role': 'user', 'content': 'Say this is a test'}],
        model='gpt-3.5-turbo-instruct',
        stream=True
    })

    for chunk in completion:
        print(chunk.choices[0].delta)

await get_chat_completion_stream()
REST API Example

In REST calls, x-portkey-api-key is a compulsory header, it can be paired with the following options for sending provider details:

  1. x-portkey-provider & Authorization (or similar auth headers)

  2. x-portkey-virtual-key

  3. x-portkey-config

Example request using Provider + Auth:

curl "https://api.portkey.ai/v1/completions" \
  -H "Content-Type: application/json" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-provider: openai" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
    "model": "gpt-3.5-turbo-instruct",
    "prompt": "Hello!"
  }'

Example request using Virtual Key:

curl "https://api.portkey.ai/v1/completions" \
  -H "Content-Type: application/json" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-virtual-key: openai-virtual-key" \
  -d '{
    "model": "gpt-3.5-turbo-instruct",
    "prompt": "Hello!"
  }'

Example request using Config:

curl "https://api.portkey.ai/v1/completions" \
  -H "Content-Type: application/json" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-config: config-key" \
  -d '{
    "model": "gpt-3.5-turbo-instruct",
    "prompt": "Hello!"
  }'

You can send 3 other headers in your Portkey requests

  • x-portkey-trace-id: Send trace id

  • x-portkey-metadata: Send custom metadata

  • x-portkey-cache-force-refresh: Force refresh cache for this request

Example request using these 3:

curl "https://api.portkey.ai/v1/completions" \
  -H "Content-Type: application/json" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-config: config-key" \
  -H "x-portkey-trace-id: $UNIQUE_TRACE_ID" \
  -H "x-portkey-metadata: {\"_user\":\"john\"}" \
  -H "x-portkey-cache-force-refresh: True" \
  -d '{
    "model": "gpt-3.5-turbo-instruct",
    "prompt": "Hello!"
  }'

Response Format

The response will conform to the Text Completions Object schema from the Portkey API, typically including the generated text based on the prompt and the selected model.

The for this endpoint is structured to generate text completions based on a given prompt and model selection. The response will be a .

Pass the config parameters for the request in the headers as defined .

For REST API examples, scroll .

request body
Completion Object
here
here

Completions

post
Authorizations
Body
modelany ofRequired

ID of the model to use. You can use the List models API to see all of your available models, or see our Model overview for descriptions of them.

stringOptional
or
string · enumOptionalPossible values:
promptone of | nullableRequired

The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.

Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.

Default: <|endoftext|>
stringOptionalDefault: ""Example: This is a test.
or
string[]OptionalExample: This is a test.
or
integer[] · min: 1OptionalExample: [1212, 318, 257, 1332, 13]
or
best_ofinteger | nullableOptional

Generates best_of completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.

When used with n, best_of controls the number of candidate completions and n specifies how many to return – best_of must be greater than n.

Note: Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for max_tokens and stop.

Default: 1
echoboolean | nullableOptional

Echo back the prompt in addition to the completion

Default: false
frequency_penaltynumber | nullableOptional

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

See more information about frequency and presence penalties.

Default: 0
logprobsinteger | nullableOptional

Include the log probabilities on the logprobs most likely output tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response.

The maximum value for logprobs is 5.

Default: null
max_tokensinteger | nullableOptional

The maximum number of tokens that can be generated in the completion.

The token count of your prompt plus max_tokens cannot exceed the model's context length. Example Python code for counting tokens.

Default: 16Example: 16
ninteger | nullableOptional

How many completions to generate for each prompt.

Note: Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for max_tokens and stop.

Default: 1Example: 1
presence_penaltynumber | nullableOptional

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

See more information about frequency and presence penalties.

Default: 0
seedinteger | nullableOptional

If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same seed and parameters should return the same result.

Determinism is not guaranteed, and you should refer to the system_fingerprint response parameter to monitor changes in the backend.

stopone of | nullableOptional

Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.

Default: null
string | nullableOptionalDefault: <|endoftext|>Example:
or
string[] · min: 1 · max: 4OptionalExample: ["\n"]
streamboolean | nullableOptional

Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message. Example Python code.

Default: false
suffixstring | nullableOptional

The suffix that comes after a completion of inserted text.

This parameter is only supported for gpt-3.5-turbo-instruct.

Default: nullExample: test.
temperaturenumber | nullableOptional

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

We generally recommend altering this or top_p but not both.

Default: 1Example: 1
top_pnumber | nullableOptional

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.

We generally recommend altering this or temperature but not both.

Default: 1Example: 1
userstringOptional

A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.

Example: user-1234
Responses
200
OK
application/json
post
curl https://api.portkey.ai/v1/completions \
  -H "Content-Type: application/json" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-virtual-key: $PORTKEY_PROVIDER_VIRTUAL_KEY" \
  -d '{
    "model": "gpt-3.5-turbo-instruct",
    "prompt": "Say this is a test",
    "max_tokens": 7,
    "temperature": 0
  }'
200

OK

{
  "id": "text",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 1,
      "logprobs": {
        "text_offset": [
          1
        ],
        "token_logprobs": [
          1
        ],
        "tokens": [
          "text"
        ],
        "top_logprobs": [
          {
            "ANY_ADDITIONAL_PROPERTY": 1
          }
        ]
      },
      "text": "text"
    }
  ],
  "created": 1,
  "model": "text",
  "system_fingerprint": "text",
  "object": "text_completion",
  "usage": {
    "completion_tokens": 1,
    "prompt_tokens": 1,
    "total_tokens": 1
  }
}
  • Create Completion
  • POSTCompletions
  • SDK Usage
  • Method Signature
  • Parameters
  • Example Usage
  • Response Format