Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • Portkey SDK Integration with Anyscale
  • 1. Install the Portkey SDK
  • 2. Initialize Portkey with Anyscale Virtual Key
  • 3. Invoke Chat Completions with Anyscale
  • Directly Using Portkey's REST API
  • Using the OpenAI Python or Node SDKs for Anyscale
  • Managing Anyscale Prompts
  • Creating Prompts
  • Using Prompts
  • List of Models Supported
  • Advanced Use Cases
  • Streaming Responses
  • Fine-tuning
  • Portkey Features

Was this helpful?

Edit on GitHub
  1. Integrations
  2. LLMs

Anyscale

Integrate Anyscale endpoints with Portkey seamlessly and make your OSS models production-ready

PreviousAI21NextCerebras

Last updated 10 months ago

Was this helpful?

Portkey's suite of features - AI gateway, observability, prompt management, and continuous fine-tuning are all enabled for the OSS models (Llama2, Mistral, Zephyr, and more) available on Anyscale endpoints.

Provider Slug: anyscale

Portkey SDK Integration with Anyscale

1. Install the Portkey SDK

npm install --save portkey-ai
pip install portkey-ai

2. Initialize Portkey with Anyscale Virtual Key

To use Anyscale with Portkey, , then add it to Portkey to create the virtual key.

import Portkey from 'portkey-ai'
 
const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY", // defaults to process.env["PORTKEY_API_KEY"]
    virtualKey: "ANYSCALE_VIRTUAL_KEY" // Your Anyscale Virtual Key
})
from portkey_ai import Portkey

portkey = Portkey(
    api_key="PORTKEY_API_KEY",  # Replace with your Portkey API key
    virtual_key="ANYSCALE_VIRTUAL_KEY"   # Replace with your virtual key for Anyscale
)

3. Invoke Chat Completions with Anyscale

const chatCompletion = await portkey.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'mistralai/Mistral-7B-Instruct-v0.1',
});

console.log(chatCompletion.choices);
completion = portkey.chat.completions.create(
    messages= [{ "role": 'user', "content": 'Say this is a test' }],
    model= 'mistralai/Mistral-7B-Instruct-v0.1'
)

print(completion.choices)

Directly Using Portkey's REST API

Alternatively, you can also directly call Anyscale models through Portkey's REST API - it works exactly the same as OpenAI API, with 2 differences:

  1. You send your requests to Portkey's complete Gateway URL https://api.portkey.ai/v1/chat/completions

  2. You have to add Portkey specific headers.

    1. x-portkey-api-key for sending your Portkey API Key

    2. x-portkey-virtual-key for sending your provider's virtual key (Alternatively, if you are not using Virtual keys, you can send your Auth header for your provider, and pass the x-portkey-provider header along with it)

curl https://api.portkey.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $ANYSCALE_API_KEY" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-provider: anyscale" \ 
  -d '{
    "model": "mistralai/Mistral-7B-Instruct-v0.1",
    "messages": [{"role": "user","content": "Hello!"}]
  }'

Using the OpenAI Python or Node SDKs for Anyscale

You can also use the baseURL param in the standard OpenAI SDKs and make calls to Portkey + Anyscale directly from there. Like the Rest API example, you are only required to change the baseURL and add defaultHeaders to your instance. You can use the Portkey SDK to make it simpler:

import OpenAI from 'openai'; // We're using the v4 SDK
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'

const anyscale = new OpenAI({
  apiKey: 'ANYSCALE_API_KEY',
  baseURL: PORTKEY_GATEWAY_URL,
  defaultHeaders: createHeaders({
    provider: "anyscale",
    apiKey: "PORTKEY_API_KEY" // defaults to process.env["PORTKEY_API_KEY"]
  })
});

async function main() {
  const chatCompletion = await anyscale.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'mistralai/Mistral-7B-Instruct-v0.1',
  });

  console.log(chatCompletion.choices);
}

main();
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders

anyscale = OpenAI(
    api_key="ANYSCALE_API_KEY", # defaults to os.environ.get("OPENAI_API_KEY")
    base_url=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        provider="anyscale",
        api_key="PORTKEY_API_KEY" # defaults to os.environ.get("PORTKEY_API_KEY")
    )
)

chat_complete = anyscale.chat.completions.create(
    model="mistralai/Mistral-7B-Instruct-v0.1",
    messages=[{"role": "user", "content": "Say this is a test"}],
)

print(chat_complete.choices[0].message.content)

This request will be automatically logged by Portkey. You can view this in your logs dashboard. Portkey logs the tokens utilized, execution time, and cost for each request. Additionally, you can delve into the details to review the precise request and response data.

Managing Anyscale Prompts

Creating Prompts

Use the Portkey prompt playground to set variables and try out various model params to get the right output.

Using Prompts

Deploy the prompts using the Portkey SDK or REST API

import Portkey from 'portkey-ai'

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY", // defaults to process.env["PORTKEY_API_KEY"]
})

// Make the prompt creation call with the variables
const promptCompletion = await portkey.prompts.completions.create({
    promptID: "YOUR_PROMPT_ID",
    variables: {
        //Required variables for prompt
    }
})

We can also override the hyperparameters:

const promptCompletion = await portkey.prompts.completions.create({
    promptID: "YOUR_PROMPT_ID",
    variables: {
        //Required variables for prompt
    },
    max_tokens: 250,
    presence_penalty: 0.2
})
from portkey_ai import Portkey

client = Portkey(
    api_key="PORTKEY_API_KEY",  # defaults to os.environ.get("PORTKEY_API_KEY")
)

prompt_completion = client.prompts.completions.create(
    prompt_id="YOUR_PROMPT_ID",
    variables={
        #Required variables for prompt
    }
)

print(prompt_completion.data)

We can also override the hyperparameters:

prompt_completion = client.prompts.completions.create(
    prompt_id="YOUR_PROMPT_ID",
    variables={
        #Required variables for prompt
    },
    max_tokens=250,
    presence_penalty=0.2
)
print(prompt_completion.data)
curl -X POST "https://api.portkey.ai/v1/prompts/9218b4e6-52db-41a4-b963-4ee6505ed758/completions" \
-H "Content-Type: application/json" \
-H "x-portkey-api-key: $PORTKEY_API_KEY" \
-d '{
    "variables": {
        "title": "The impact of AI on middle school teachers",
        "num_sections": "5"
    },
    "max_tokens": 250, # Optional
    "presence_penalty": 0.2 # Optional
}'

Observe how this streamlines your code readability and simplifies prompt updates via the UI without altering the codebase.


List of Models Supported

Model Name
Model Key on Portkey

meta-llama/Llama-2-7b-chat-hf

meta-llama/Llama-2-13b-chat-hf

meta-llama/Llama-2-70b-chat-hf

codellama/CodeLlama-34b-Instruct-hf

mistralai/Mistral-7B-Instruct-v0.1

HuggingFaceH4/zephyr-7b-beta


Advanced Use Cases

Streaming Responses

Portkey supports streaming responses using Server Sent Events (SSE).

import OpenAI from 'openai';
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'

const anyscale = new OpenAI({
  baseURL: PORTKEY_GATEWAY_URL,
  defaultHeaders: createHeaders({
    mode: "anyscale",
    apiKey: "PORTKEY_API_KEY" // defaults to process.env["PORTKEY_API_KEY"]
  })
});

async function main() {
  const stream = await anyscale.chat.completions.create({
    model: 'mistralai/Mistral-7B-Instruct-v0.1',
    messages: [{ role: 'user', content: 'Say this is a test' }],
    stream: true,
  });
  for await (const chunk of stream) {
    process.stdout.write(chunk.choices[0]?.delta?.content || '');
  }
}

main();
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders

anyscale = OpenAI(
    api_key="ANYSCALE-API-KEY",  # defaults to os.environ.get("OPENAI_API_KEY")
    base_url=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        provider="anyscale",
        api_key="PORTKEY-API-KEY" # defaults to os.environ.get("PORTKEY_API_KEY")
    )
)

chat_complete = anyscale.chat.completions.create(
    model="mistralai/Mistral-7B-Instruct-v0.1",
    messages=[{"role": "user", "content": "Say this is a test"}],
    stream=True
)

for chunk in chat_complete:
    print(chunk.choices[0].delta.content, end="", flush=True)

Fine-tuning

Portkey Features

Portkey supports the complete host of it's functionality via the OpenAI SDK so you don't need to migrate away from it.

Please find more information in the relevant sections:

.

You can manage all prompts for Anyscale's OSS models in the . All the current models of Anyscale are supported.

Please refer to our fine-tuning guides to take advantage of Portkey's advanced capabilities.

get your Anyscale API key from here
Prompt Library
continuous fine-tuning
Add metadata to your requests
Add gateway configs to the client or a single request
Trace Anyscale requests
Setup a fallback to Azure OpenAI
Llama 2 - 7B
Llama 2- 13B
Llama 2 - 70B
Code Llama - 34B
Mistral - 7B
HF Zephyr - 7B (Based on Mistral-7B)
List of all possible Portkey headers