Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • How Tracing Works
  • Trace Tree Structure
  • Enabling Tracing
  • See Tracing in Action
  • Tracing in Langchain
  • Tracing Llamaindex Requests
  • Inserting Logs
  • Tracing for Gateway Features
  • Why Use Tracing?
  • Capturing User Feedback

Was this helpful?

Edit on GitHub
  1. Product
  2. Observability (OpenTelemetry)

Tracing

PreviousLogsNextAnalytics

Last updated 9 months ago

Was this helpful?

This feature is available for all plans:-

  • : 10k Logs / Month with 3 day Log Retention

  • : 100k Logs / Month + $9 for additional 100k with 30 Days Log Retention

  • : Unlimited

The Tracing capabilities in Portkey empowers you to monitor the lifecycle of your LLM requests in a unified, chronological view.

This is perfect for agentic workflows, chatbots, or multi-step LLM calls, by helping you understand and optimize your AI application's performance.

How Tracing Works

Portkey implements OpenTelemetry-compliant tracing. When you include a trace ID with your requests, all related LLM calls are grouped together in the Traces View, appearing as "spans" within that trace.

"Span" is another word for subgrouping of LLM calls. Based on how you instrument, it can refer to another group within your trace or to a single LLM call.

Trace Tree Structure

Portkey uses a tree data structure for tracing, similar to OTel.

Each node in the tree is a span with a unique spanId and optional spanName. Child spans link to a parent via the parentSpanId. Parentless spans become root nodes.

traceId
├─ parentSpanId
│  ├─ spanId
│  ├─ spanName
Key - Node
Key - Python
Expected Value
Required?

traceId

trace_id

Unique string

YES

spanId

span_id

Unique string

NO

spanName

span_name

string

NO

parentSpanId

parent_span_id

Unique string

NO


Enabling Tracing

You can enable tracing by passing the trace tree values while making your request (or while instantiating your client).

Based on these values, Portkey will instrument your requests, and will show the exact trace with its spans on the "Traces" view in Logs page.

Add tracing details to a single request (recommended)

const requestOptions = {
    traceId: "1729",
    spanId: "11",
    spanName: "LLM Call"
}

const chatCompletion = await portkey.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-4o',
}, requestOptions);

Or, add trace details while instantiating your client

import Portkey from 'portkey-ai';

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY",
    virtualKey: "VIRTUAL_KEY",
    traceId: "1729",
    spanId: "11",
    spanName: "LLM Call"
})
completion = portkey.with_options(
    trace_id="1729",
    span_id="11",
    span_name="LLM Call"        
).chat.completions.create(
    messages = [{ "role": 'user', "content": 'Say this is a test' }],
    model = 'gpt-3.5-turbo'
)

Pass Trace details while instantiating your client

from portkey_ai import Portkey

portkey = Portkey(
    api_key="PORTKEY_API_KEY",
    virtual_key="VIRTUAL_KEY",
    trace_id="1729",
    span_id="11",
    span_name="LLM Call"
)
import { createHeaders } from 'portkey-ai'

const requestOptions = {
    traceId: "1729",
    spanId: "11",
    spanName: "LLM Call"
}

const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
}, requestOptions);
from portkey_ai import createHeaders

req_headers = createHeaders(
    trace_id="1729",
    span_id="11",
    span_name="LLM Call
)

chat_complete = client.with_options(headers=req_headers).chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Say this is a test"}],
)
curl https://api.portkey.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-provider: openai" \
  -H "x-portkey-trace-id: 1729"\
  -H "x-portkey-span-id: 11"\
  -H "x-portkey-span-name: LLM_CALL"\
  -d '{
    "model": "gpt-4o",
    "messages": [{"role": "user","content": "Hello!"}]
  }'

If you are only passing trace ID and not the span details, you can set the trace ID while making your request or while instantiating your client.

const requestOptions = {traceID: "YOUR_TRACE_ID"}

const chatCompletion = await portkey.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-4o',
}, requestOptions);

console.log(chatCompletion.choices);

Pass Trace ID while instantiating your client

import Portkey from 'portkey-ai';

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY",
    virtualKey: "VIRTUAL_KEY",
    traceID: "TRACE_ID"
})
completion = portkey.with_options(
    trace_id = "TRACE_ID"
).chat.completions.create(
    messages = [{ "role": 'user', "content": 'Say this is a test' }],
    model = 'gpt-3.5-turbo'
)

Pass Trace ID while instantiating your client

from portkey_ai import Portkey

portkey = Portkey(
    api_key="PORTKEY_API_KEY",
    virtual_key="VIRTUAL_KEY",
    trace_id="TRACE_ID"
)
import { createHeaders } from 'portkey-ai'

const reqHeaders = {headers: createHeaders({"traceID": "TRACE_ID"})}

const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
}, reqHeaders);
from portkey_ai import createHeaders

req_headers = createHeaders(trace_id="TRACE_ID")

chat_complete = client.with_options(headers=req_headers).chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Say this is a test"}],
)
curl https://api.portkey.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-provider: openai" \ 
  -H "x-portkey-trace-id: TRACE_ID" \
  -d '{
    "model": "gpt-4-turbo",
    "messages": [{
        "role": "system",
        "content": "You are a helpful assistant."
      },{
        "role": "user",
        "content": "Hello!"
      }]
  }'

See Tracing in Action

Tracing in Langchain

Portkey has a dedicated handler that can instrument your Langchain chains and agents to trace them.

  1. First, install Portkey SDK, and Langchain's packages

$ pip install langchain_OpenAI portkey-ai langchain_community
  1. Import the packages

from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain
from portkey_ai.langchain import LangchainCallbackHandler
from portkey_ai import createHeaders
  1. Instantiate Portkey's Langchain Callback Handler

portkey_handler = LangchainCallbackHandler(
      api_key="YOUR_PORTKEY_API_KEY", 
      metadata={
            "user_name": "User_Name",
            "traceId": "Langchain_sample_callback_handler"
      }
)
  1. Add the callback to the ChatOpenAI instance

llm = ChatOpenAI(
    api_key="OPENAI_API_KEY",
    callbacks=[portkey_handler],
)
  1. Also add the callback when you define or run your LLM chain

chain = LLMChain(
    llm=llm,
    prompt=prompt,
    callbacks=[portkey_handler]
)

handler_config = {'callbacks' : [portkey_handler]}

chain.invoke({"input": "what is langchain?"}, config=handler_config)

Tracing Llamaindex Requests

Portkey has a dedicated handler to instrument your Llamaindex requests on Portkey.

  1. First, install Portkey SDK, and LlamaIndex packages

$ pip install openai portkey-ai llama-index 
  1. Import the packages

from llama_index.llms.openai import OpenAI
from portkey_ai.llamaindex import LlamaIndexCallbackHandler
  1. Instantiate Portkey's LlamaIndex Callback Handler

portkey_handler = LlamaIndexCallbackHandler(
      api_key="PORTKEY_API_KEY",
      metadata={
            "user_name": "User_Name",
            "traceId": "Llamaindex_sample_callback_handler"
      }
)
  1. Add it to OpenAI llm class

llm = OpenAI(
    model="gpt-4o",
    api_key="OPENAI_API_KEY",
    callback_manager=[portkey_handler],
)
  1. In Llama Index, you can also set the callback at a global level

from llama_index.core import Settings
from llama_index.core.callbacks import CallbackManager

Settings.callback_manager = CallbackManager([portkey_handler])
Settings.llm = llm

Inserting Logs

The logger endpoint supports inserting a single log as well as log array, and helps you build traces of any depth or complexity. For more, check here:


Tracing for Gateway Features

Tracing also works very well to capture the Gateway behavior on retries, fallbacks, and other routing mechanisms on Portkey Gateway.

Portkey automatically groups all the requests that were part of a single fallback or retry config and shows the failed and succeeded requests chronologically as "spans" inside a "trace".

This is especially useful when you want to understand the total latency and behavior of your app when retry or fallbacks were triggered.


Why Use Tracing?

  • Cost Insights: View aggregate LLM costs at the trace level.

  • Debugging: Easily browse all requests in a single trace and identify failures.

  • Performance Analysis: Understand your entire request lifecycle and total trace duration.

  • User Feedback Integration: Link user feedback to specific traces for targeted improvements.


Capturing User Feedback

Trace IDs can also be used to link user feedback to specific generations. This can be used in a system where users provide feedback, like a thumbs up or thumbs down, or something more complex via our feedback APIs. This feedback can be linked to traces which can span over a single generation or multiple ones. Read more here:

If you are using the to add logs to Portkey, your traceId, spanId etc. will become part of the metadata object in your log, and Portkey will instrument your requests to take those values into account.

For more, check out the & docs.

Insert Log API
Insert a Log
Fallback
Automatic Retries
Feedback
Developer
Production
Enterprise