Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Provider Endpoints

Embeddings

PreviousChatNextImages

Last updated 9 months ago

Was this helpful?

Supported Providers
  • AI21

  • Anyscale

  • Azure OpenAI

  • AWS Bedrock

  • Cohere

  • Fireworks AI

  • Google Gemini

  • Jina

  • Mistral AI

  • Nomic AI

  • Ollama

  • OpenAI

  • Together AI

  • Cloudflare Workers AI

  • Zhipu AI

Create Embeddings

POST /embeddings

Generate embeddings using the selected Large Language Model (LLM).

SDK Usage

The embeddings.create method in the Portkey SDK facilitates the generation of embeddings using various LLMs. This method provides a straightforward interface similar to the OpenAI API for generating embeddings.

Method Signature

portkey.embeddings.create(requestParams[, configParams]);
# with only request params
portkey.embeddings.create(requestParams);
# with request and config params
portkey.with_options(configParams).embeddings.create(requestParams);

Parameters

  1. configParams (Object): Additional configuration options for the request. This is an optional parameter that can include custom config options for this specific request. These will override the configs set in the Portkey Client.

Example Usage

import Portkey from 'portkey-ai';

// Initialize the Portkey client
const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY",  // Replace with your Portkey API key
    virtualKey: "VIRTUAL_KEY"   // Optional: For virtual key management
});

// Generate embeddings
async function getEmbeddings() {
    const embeddings = await portkey.embeddings.create({
        input: "embed this",
        model: "text-embedding-3-large",
    });

    console.log(embeddings);
}
await getEmbeddings();

// Generate embeddings with config params
async function getEmbeddingsWithConfig() {
    const embeddings = await portkey.embeddings.create({
        input: "embed this",
        model: "text-embedding-3-large",
    }, {config: "custom-config-123"});

    console.log(embeddings);
}
await getEmbeddingsWithConfig();
from portkey_ai import Portkey

# Initialize the Portkey client
portkey = Portkey(
    api_key="PORTKEY_API_KEY",  # Replace with your Portkey API key
    virtual_key="VIRTUAL_KEY"   # Optional: For virtual key management
)

# Generate embeddings
def get_embeddings():
    embeddings = portkey.embeddings.create(
        input='The vector representation for this text',
        model='text-embedding-3-large'
    )
    print(embeddings)

get_embeddings()

# Generate embeddings with config parameters
def get_embeddings_with_config():
    embeddings = portkey.with_options(config='custom-config-123').embeddings.create(
        input='The vector representation for this text',
        model='text-embedding-3-large'
    })
    print(embeddings)

get_embeddings_with_config()

Response Format

The response will conform to the Embedding Object schema from the Portkey API, typically including a list of embedding vectors consistent with the format provided by OpenAI for embedding objects.

This endpoint allows you to generate embeddings for text inputs using a specific model. The response will be an Embedding Object consistent with format.

requestParams (Object): Parameters for the embedding request. All are supported. These parameters include the input text and model, and are automatically transformed by Portkey for LLMs other than OpenAI. Parameters not supported by other LLMs will be omitted.

OpenAI's Embedding Object
OpenAI params

Embeddings

post
Authorizations
Body
inputone ofRequired

Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less. Example Python code for counting tokens.

Example: The quick brown fox jumped over the lazy dog
stringOptional

The string that will be turned into an embedding.

Default: ""Example: This is a test.
or
string[] · min: 1 · max: 2048Optional

The array of strings that will be turned into an embedding.

Example: ['This is a test.']
or
integer[] · min: 1 · max: 2048Optional

The array of integers that will be turned into an embedding.

Example: [1212, 318, 257, 1332, 13]
or
modelany ofRequired

ID of the model to use. You can use the List models API to see all of your available models, or see our Model overview for descriptions of them.

Example: text-embedding-3-small
stringOptional
or
string · enumOptionalPossible values:
encoding_formatstring · enumOptional

The format to return the embeddings in. Can be either float or base64.

Default: floatExample: floatPossible values:
dimensionsinteger · min: 1Optional

The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.

userstringOptional

A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.

Example: user-1234
Responses
200
OK
application/json
post
curl https://api.portkey.ai/v1/embeddings \
  -H "x-portkey-api-key: $PORTKEY_API_KEY" \
  -H "x-portkey-virtual-key: $PORTKEY_PROVIDER_VIRTUAL_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "The food was delicious and the waiter...",
    "model": "text-embedding-ada-002",
    "encoding_format": "float"
  }'
200

OK

{
  "data": [
    {
      "index": 1,
      "embedding": [
        1
      ],
      "object": "embedding"
    }
  ],
  "model": "text",
  "object": "list",
  "usage": {
    "prompt_tokens": 1,
    "total_tokens": 1
  }
}
  • Create Embeddings
  • POSTEmbeddings
  • SDK Usage
  • Method Signature
  • Parameters
  • Example Usage