Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • How does it work?
  • Putting it all together in Portkey's prompt manager:
  • Deploying the Prompt with Portkey
  • Detailed Guide on Few-Shot Prompting
  • Support

Was this helpful?

Edit on GitHub
  1. Guides
  2. Use Cases

Few-Shot Prompting

LLMs are highly capable of following a given structure. By providing a few examples of how the assistant should respond to a given prompt, the LLM can generate responses that closely follow the format of these examples.

Portkey enhances this capability with the raw prompt feature of prompt templates. You can easily add few-shot learning examples to your templates with raw prompt and dynamically update them whenever you want, without needing to modify the prompt templates!

How does it work?

Let's consider a use case where, given a candidate profile and a job description, the LLM is expected to output candidate notes in a specific JSON format.

This is how our raw prompt looks:

[
    { 
        "role": "system", 
        "message": "You output candidate notes in JSON format when given a candidate profile and a job description.",
    },
    {{few_shot_examples}},
    {
        "role": "user",
        "message": "Candidate Profile: {{profile}} \n Job Description: {{jd}}"
    },
]

Let's define our variables:

As you can see, we have added variables few_shot_examples, profile, and jd in the above examples.

profile = "An experienced data scientist with a PhD in Computer Science and 5 years of experience working with machine learning models in the healthcare industry."
jd = "We are seeking a seasoned data scientist with a strong background in machine learning, ideally with experience in the healthcare sector. The ideal candidate should have a PhD or Master's degree in a relevant field and a minimum of 5 years of industry experience."

And now let's add some examples with the expected JSON structure:

few_shot_examples = 
[
 {
  "role": "user",
  "content": "Candidate Profile: Experienced software engineer with a background in developing scalable web applications using Python. Job Description: We’re looking for a Python developer to help us build and scale our web platform.",
 },
 {
  "role": "assistant",
  "content": "{'one-line-intro': 'Experienced Python developer with a track record of building scalable web applications.', 'move-forward': 'Yes', 'priority': 'P1', 'pros': '1. Relevant experience in Python. 2. Has built and scaled web applications. 3. Likely to fit well with the job requirements.', 'cons': 'None apparent from the provided profile.'}",
 },
 { 
  "role": "user",
  "content": "Candidate Profile: Recent graduate with a degree in computer science and a focus on data analysis. Job Description: Seeking a seasoned data scientist to analyze large data sets and derive insights."
 },
 {
  "role": "assistant",
  "content": "{'one-line-intro': 'Recent computer science graduate with a focus on data analysis.', 'move-forward': 'Maybe', 'priority': 'P2', 'pros': '1. Has a strong educational background in computer science. 2. Specialized focus on data analysis.', 'cons': '1. Lack of professional experience. 2. Job requires a seasoned data scientist.' }"
  }
]

In this configuration, {{few_shot_examples}} is a placeholder for the few-shot learning examples, which are dynamically provided and can be updated as needed. This allows the LLM to adapt its responses to the provided examples, facilitating versatile and context-aware outputs.

Putting it all together in Portkey's prompt manager:

  1. Selecting Chat mode will enable the Raw Prompt feature:

Deploying the Prompt with Portkey

from portkey_ai import Portkey

client = Portkey(
    api_key="PORTKEY_API_KEY",  # defaults to os.environ.get("PORTKEY_API_KEY")
)

prompt_completion = client.prompts.completions.create(
    prompt_id="Your Prompt ID", # Add the prompt ID we just created
    variables={
       few_shot_examples: fseObj,
       profile: "",
       jd: ""
    }
)

print(prompt_completion)
# We can also override the hyperparameters
prompt_completion = client.prompts.completions.create(
    prompt_id="Your Prompt ID", # Add the prompt ID we just created
    variables={
       few_shot_examples: fseObj,
       profile: "",
       jd: ""
    }
    max_tokens=250,
    presence_penalty=0.2
)
print(prompt_completion)
import Portkey from 'portkey-ai'

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY",
})

// Make the prompt creation call with the variables
const promptCompletion = await portkey.prompts.completions.create({
    promptID: "Your Prompt ID",
    variables: {
       few_shot_examples: fseObj,
       profile: "",
       jd: ""
    }
})
// We can also override the hyperparameters
const promptCompletion = await portkey.prompts.completions.create({
    promptID: "Your Prompt ID",
    variables: {
       few_shot_examples: fseObj,
       profile: "",
       jd: ""
    },
    max_tokens: 250,
    presence_penalty: 0.2
})
curl -X POST "https://api.portkey.ai/v1/prompts/:PROMPT_ID/completions" \
-H "Content-Type: application/json" \
-H "x-portkey-api-key: $PORTKEY_API_KEY" \
-d '{
       "variables": {
              few_shot_examples: fseObj,
              profile: "",
              jd: ""
    },
    "max_tokens": 250, # Optional
    "presence_penalty": 0.2 # Optional
}'

You can pass your dynamic few shot learning examples with the few_shot_examples variable, and start using the prompt template in production!

Detailed Guide on Few-Shot Prompting

Support

Facing an issue? Reach out on support@portkey.ai for a quick resolution.

PreviousUse CasesNextEnforcing JSON Schema with Anyscale & Together

Last updated 1 year ago

Was this helpful?

Go to the "Prompts" page on and Create a new Prompt template with your preferred AI provider.

Click on it and paste the . And that's it! You have your dynamically updatable few shot prompt template ready to deploy.

Deploying your prompt template to an API is extremely easy with Portkey. You can use our to use the prompt we created.

We recommend detailing the research as well as edge cases for few-shot prompting.

https://app.portkey.ai/
Prompt Completions API
this guide
raw prompt code from above