Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • Using the Render Endpoint/Method
  • Updating Prompt Params While Retrieving the Prompt
  • Using the render Output in a New Request

Was this helpful?

Edit on GitHub
  1. Product
  2. Prompt Library

Retrieve Prompts

See how to use Portkey's prompt templates with OpenAI (or any other provider) SDKs

PreviousPrompt PartialsNextAdvanced Prompting with JSON Mode

Last updated 9 months ago

Was this helpful?

This feature is available on all Portkey .

You can retrieve your saved prompts on Portkey using the /prompts/$PROMPT_ID/render endpoint. Portkey returns a JSON containing your prompt or messages body along with all the saved parameters that you can directly use in any request.

This is helpful if you are required to use provider SDKs and can not use the Portkey SDK in production. ()

Using the Render Endpoint/Method

  1. Make a request to https://api.portkey.ai/v1/prompts/$PROMPT_ID/render with your prompt ID

  2. Pass your Portkey API key with x-portkey-api-key in the header

  3. Send up the variables in your payload with { "variables": { "VARIABLE_NAME": "VARIABLE_VALUE" } }

That's it! See it in action:

curl -X POST "https://api.portkey.ai/v1/prompts/$PROMPT_ID/render" \
-H "Content-Type: application/json" \
-H "x-portkey-api-key: $PORTKEY_API_KEY" \
-d '{
  "variables": {"movie":"Dune 2"}
}'

The Output:

{
    "success": true,
    "data": {
        "model": "gpt-4",
        "n": 1,
        "top_p": 1,
        "max_tokens": 256,
        "temperature": 0,
        "presence_penalty": 0,
        "frequency_penalty": 0,
        "messages": [
            {
                "role": "system",
                "content": "You're a helpful assistant."
            },
            {
                "role": "user",
                "content": "Who directed Dune 2?"
            }
        ]
    }
}
from portkey_ai import Portkey

portkey = Portkey(
  api_key="PORTKEY_API_KEY"
)

render = portkey.prompts.render(
  prompt_id="PROMPT_ID",
  variables={ "movie":"Dune 2" }
)

print(render.data)

The Output:

{
    "model": "gpt-4",
    "n": 1,
    "top_p": 1,
    "max_tokens": 256,
    "temperature": 0,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "messages": [
        {
            "role": "system",
            "content": "You're a helpful assistant."
        },
        {
            "role": "user",
            "content": "Who directed Dune 2?"
        }
    ]
}
import Portkey from 'portkey-ai'

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY"
})

async function getRender(){
    const render = await portkey.prompts.render({
        promptID: "PROMPT_ID",
        variables: { "movie":"Dune 2" }
    })
    console.log(render.data)
}

getRender()

The Output:

{
    "model": "gpt-4",
    "n": 1,
    "top_p": 1,
    "max_tokens": 256,
    "temperature": 0,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "messages": [
        {
            "role": "system",
            "content": "You're a helpful assistant."
        },
        {
            "role": "user",
            "content": "Who directed Dune 2?"
        }
    ]
}

Updating Prompt Params While Retrieving the Prompt

If you want to change any model params (like temperature, messages body etc) while retrieving your prompt from Portkey, you can send the override params in your render payload.

Portkey will send back your prompt with overridden params, without making any changes to the saved prompt on Portkey.

curl -X POST "https://api.portkey.ai/v1/prompts/$PROMPT_ID/render" \
-H "Content-Type: application/json" \
-H "x-portkey-api-key: $PORTKEY_API_KEY" \
-d '{
  "variables": {"movie":"Dune 2"},
  "model": "gpt-3.5-turbo",
  "temperature": 2
}'

Based on the above snippet, model and temperature params in the retrieved prompt will be overridden with the newly passed values

The New Output:

{
    "success": true,
    "data": {
        "model": "gpt-3.5-turbo",
        "n": 1,
        "top_p": 1,
        "max_tokens": 256,
        "temperature": 2,
        "presence_penalty": 0,
        "frequency_penalty": 0,
        "messages": [
            {
                "role": "system",
                "content": "You're a helpful assistant."
            },
            {
                "role": "user",
                "content": "Who directed Dune 2?"
            }
        ]
    }
}
from portkey_ai import Portkey

portkey = Portkey(
  api_key="PORTKEY_API_KEY"
)

render = portkey.prompts.render(
  prompt_id="PROMPT_ID",
  variables={ "movie":"Dune 2" },
  model="gpt-3.5-turbo",
  temperature=2
)

print(render.data)

Based on the above snippet, model and temperature params in the retrieved prompt will be overridden with the newly passed values.

The New Output:

{
    "model": "gpt-3.5-turbo",
    "n": 1,
    "top_p": 1,
    "max_tokens": 256,
    "temperature": 2,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "messages": [
        {
            "role": "system",
            "content": "You're a helpful assistant."
        },
        {
            "role": "user",
            "content": "Who directed Dune 2?"
        }
    ]
}
import Portkey from 'portkey-ai'

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY"
})

async function getRender(){
    const render = await portkey.prompts.render({
        promptID: "PROMPT_ID",
        variables: { "movie":"Dune 2" },
        model: "gpt-3.5-turbo",
        temperature: 2
    })
    console.log(render.data)
}

getRender()

Based on the above snippet, model and temperature params in the retrieved prompt will be overridden with the newly passed values.

The New Output:

{
    "model": "gpt-3.5-turbo",
    "n": 1,
    "top_p": 1,
    "max_tokens": 256,
    "temperature": 2,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "messages": [
        {
            "role": "system",
            "content": "You're a helpful assistant."
        },
        {
            "role": "user",
            "content": "Who directed Dune 2?"
        }
    ]
}

Using the render Output in a New Request

Here's how you can take the output from the render API and use it for making a call. We'll take example of OpenAI SDKs, but you can use it simlarly for any other provider SDK as well.

import Portkey from 'portkey-ai';
import OpenAI from 'openai';

// Retrieving the Prompt from Portkey

const portkey = new Portkey({
    apiKey: "PORTKEY_API_KEY"
})

async function getPromptTemplate() {
    const render_response = await portkey.prompts.render({
        promptID: "PROMPT_ID",
        variables: { "movie":"Dune 2" }
    })
    return render_response.data;
}

// Making a Call to OpenAI with the Retrieved Prompt

const openai = new OpenAI({
    apiKey: 'OPENAI_API_KEY',
    baseURL: 'https://api.portkey.ai/v1',
    defaultHeaders: {
      'x-portkey-provider': 'openai',
      'x-portkey-api-key': 'PORTKEY_API_KEY',
      'Content-Type': 'application/json',
    }
});

async function main() {
    const PROMPT_TEMPLATE = await getPromptTemplate();
    const chatCompletion = await openai.chat.completions.create(PROMPT_TEMPLATE);
    console.log(chatCompletion.choices[0]);
}

main();
from portkey_ai import Portkey
from openai import OpenAI

# Retrieving the Prompt from Portkey

portkey = Portkey(
  api_key="PORTKEY_API_KEY"
)

render_response = portkey.prompts.render(
  prompt_id="PROMPT_ID",
  variables={ "movie":"Dune 2" }
)

PROMPT_TEMPLATE = render_response.data

# Making a Call to OpenAI with the Retrieved Prompt

openai = OpenAI(
    api_key = "OPENAI_API_KEY",
    base_url = "https://api.portkey.ai/v1",
    default_headers = {
      'x-portkey-provider': 'openai',
      'x-portkey-api-key': 'PORTKEY_API_KEY',
      'Content-Type': 'application/json',
    }
)

chat_complete = openai.chat.completions.create(**PROMPT_TEMPLATE)

print(chat_complete.choices[0].message.content)
plans
Example of how to use Portkey prompt templates with OpenAI SDK