Portkey Docs
HomeAPIIntegrationsChangelog
  • Introduction
    • What is Portkey?
    • Make Your First Request
    • Feature Overview
  • Integrations
    • LLMs
      • OpenAI
        • Structured Outputs
        • Prompt Caching
      • Anthropic
        • Prompt Caching
      • Google Gemini
      • Groq
      • Azure OpenAI
      • AWS Bedrock
      • Google Vertex AI
      • Bring Your Own LLM
      • AI21
      • Anyscale
      • Cerebras
      • Cohere
      • Fireworks
      • Deepbricks
      • Deepgram
      • Deepinfra
      • Deepseek
      • Google Palm
      • Huggingface
      • Inference.net
      • Jina AI
      • Lingyi (01.ai)
      • LocalAI
      • Mistral AI
      • Monster API
      • Moonshot
      • Nomic
      • Novita AI
      • Ollama
      • OpenRouter
      • Perplexity AI
      • Predibase
      • Reka AI
      • SambaNova
      • Segmind
      • SiliconFlow
      • Stability AI
      • Together AI
      • Voyage AI
      • Workers AI
      • ZhipuAI / ChatGLM / BigModel
      • Suggest a new integration!
    • Agents
      • Autogen
      • Control Flow
      • CrewAI
      • Langchain Agents
      • LlamaIndex
      • Phidata
      • Bring Your own Agents
    • Libraries
      • Autogen
      • DSPy
      • Instructor
      • Langchain (Python)
      • Langchain (JS/TS)
      • LlamaIndex (Python)
      • LibreChat
      • Promptfoo
      • Vercel
        • Vercel [Depricated]
  • Product
    • Observability (OpenTelemetry)
      • Logs
      • Tracing
      • Analytics
      • Feedback
      • Metadata
      • Filters
      • Logs Export
      • Budget Limits
    • AI Gateway
      • Universal API
      • Configs
      • Multimodal Capabilities
        • Image Generation
        • Function Calling
        • Vision
        • Speech-to-Text
        • Text-to-Speech
      • Cache (Simple & Semantic)
      • Fallbacks
      • Automatic Retries
      • Load Balancing
      • Conditional Routing
      • Request Timeouts
      • Canary Testing
      • Virtual Keys
        • Budget Limits
    • Prompt Library
      • Prompt Templates
      • Prompt Partials
      • Retrieve Prompts
      • Advanced Prompting with JSON Mode
    • Guardrails
      • List of Guardrail Checks
        • Patronus AI
        • Aporia
        • Pillar
        • Bring Your Own Guardrails
      • Creating Raw Guardrails (in JSON)
    • Autonomous Fine-tuning
    • Enterprise Offering
      • Org Management
        • Organizations
        • Workspaces
        • User Roles & Permissions
        • API Keys (AuthN and AuthZ)
      • Access Control Management
      • Budget Limits
      • Security @ Portkey
      • Logs Export
      • Private Cloud Deployments
        • Architecture
        • AWS
        • GCP
        • Azure
        • Cloudflare Workers
        • F5 App Stack
      • Components
        • Log Store
          • MongoDB
    • Open Source
    • Portkey Pro & Enterprise Plans
  • API Reference
    • Introduction
    • Authentication
    • OpenAPI Specification
    • Headers
    • Response Schema
    • Gateway Config Object
    • SDK
  • Provider Endpoints
    • Supported Providers
    • Chat
    • Embeddings
    • Images
      • Create Image
      • Create Image Edit
      • Create Image Variation
    • Audio
      • Create Speech
      • Create Transcription
      • Create Translation
    • Fine-tuning
      • Create Fine-tuning Job
      • List Fine-tuning Jobs
      • Retrieve Fine-tuning Job
      • List Fine-tuning Events
      • List Fine-tuning Checkpoints
      • Cancel Fine-tuning
    • Batch
      • Create Batch
      • List Batch
      • Retrieve Batch
      • Cancel Batch
    • Files
      • Upload File
      • List Files
      • Retrieve File
      • Retrieve File Content
      • Delete File
    • Moderations
    • Assistants API
      • Assistants
        • Create Assistant
        • List Assistants
        • Retrieve Assistant
        • Modify Assistant
        • Delete Assistant
      • Threads
        • Create Thread
        • Retrieve Thread
        • Modify Thread
        • Delete Thread
      • Messages
        • Create Message
        • List Messages
        • Retrieve Message
        • Modify Message
        • Delete Message
      • Runs
        • Create Run
        • Create Thread and Run
        • List Runs
        • Retrieve Run
        • Modify Run
        • Submit Tool Outputs to Run
        • Cancel Run
      • Run Steps
        • List Run Steps
        • Retrieve Run Steps
    • Completions
    • Gateway for Other API Endpoints
  • Portkey Endpoints
    • Configs
      • Create Config
      • List Configs
      • Retrieve Config
      • Update Config
    • Feedback
      • Create Feedback
      • Update Feedback
    • Guardrails
    • Logs
      • Insert a Log
      • Log Exports [BETA]
        • Retrieve a Log Export
        • Update a Log Export
        • List Log Exports
        • Create a Log Export
        • Start a Log Export
        • Cancel a Log Export
        • Download a Log Export
    • Prompts
      • Prompt Completion
      • Render
    • Virtual Keys
      • Create Virtual Key
      • List Virtual Keys
      • Retrieve Virtual Key
      • Update Virtual Key
      • Delete Virtual Key
    • Analytics
      • Graphs - Time Series Data
        • Get Requests Data
        • Get Cost Data
        • Get Latency Data
        • Get Tokens Data
        • Get Users Data
        • Get Requests per User
        • Get Errors Data
        • Get Error Rate Data
        • Get Status Code Data
        • Get Unique Status Code Data
        • Get Rescued Requests Data
        • Get Cache Hit Rate Data
        • Get Cache Hit Latency Data
        • Get Feedback Data
        • Get Feedback Score Distribution Data
        • Get Weighted Feeback Data
        • Get Feedback Per AI Models
      • Summary
        • Get All Cache Data
      • Groups - Paginated Data
        • Get User Grouped Data
        • Get Model Grouped Data
        • Get Metadata Grouped Data
    • API Keys [BETA]
      • Update API Key
      • Create API Key
      • Delete an API Key
      • Retrieve an API Key
      • List API Keys
    • Admin
      • Users
        • Retrieve a User
        • Retrieve All Users
        • Update a User
        • Remove a User
      • User Invites
        • Invite a User
        • Retrieve an Invite
        • Retrieve All User Invites
        • Delete a User Invite
      • Workspaces
        • Create Workspace
        • Retrieve All Workspaces
        • Retrieve a Workspace
        • Update Workspace
        • Delete a Workspace
      • Workspace Members
        • Add a Workspace Member
        • Retrieve All Workspace Members
        • Retrieve a Workspace Member
        • Update Workspace Member
        • Remove Workspace Member
  • Guides
    • Getting Started
      • A/B Test Prompts and Models
      • Tackling Rate Limiting
      • Function Calling
      • Image Generation
      • Getting started with AI Gateway
      • Llama 3 on Groq
      • Return Repeat Requests from Cache
      • Trigger Automatic Retries on LLM Failures
      • 101 on Portkey's Gateway Configs
    • Integrations
      • Llama 3 on Portkey + Together AI
      • Introduction to GPT-4o
      • Anyscale
      • Mistral
      • Vercel AI
      • Deepinfra
      • Groq
      • Langchain
      • Mixtral 8x22b
      • Segmind
    • Use Cases
      • Few-Shot Prompting
      • Enforcing JSON Schema with Anyscale & Together
      • Detecting Emotions with GPT-4o
      • Build an article suggestion app with Supabase pgvector, and Portkey
      • Setting up resilient Load balancers with failure-mitigating Fallbacks
      • Run Portkey on Prompts from Langchain Hub
      • Smart Fallback with Model-Optimized Prompts
      • How to use OpenAI SDK with Portkey Prompt Templates
      • Setup OpenAI -> Azure OpenAI Fallback
      • Fallback from SDXL to Dall-e-3
      • Comparing Top10 LMSYS Models with Portkey
      • Build a chatbot using Portkey's Prompt Templates
  • Support
    • Contact Us
    • Developer Forum
    • Common Errors & Resolutions
    • December '23 Migration
    • Changelog
Powered by GitBook
On this page
  • Groq + Llama 3 + Portkey
  • Use blazing fast Groq API with OpenAI Compatibility using Portkey!
  • With OpenAI Client
  • With Portkey Client
  • Observability with Portkey

Was this helpful?

Edit on GitHub
  1. Guides
  2. Getting Started

Llama 3 on Groq

PreviousGetting started with AI GatewayNextReturn Repeat Requests from Cache

Last updated 1 year ago

Was this helpful?

Groq + Llama 3 + Portkey

Use blazing fast Groq API with OpenAI Compatibility using Portkey!

!pip install -qU portkey-ai openai

You will need Portkey and Groq API keys to run this notebook.

  • Sign up for Portkey and generate your API key

  • Get your Groq API key

With OpenAI Client

from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
from google.colab import userdata

client = OpenAI(
    api_key= userdata.get('GROQ_API_KEY'), ## replace it your Groq API key
    base_url=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        provider="groq",
        api_key= userdata.get('PORTKEY_API_KEY'), ## replace it your Portkey API key
    )
)

chat_complete = client.chat.completions.create(
    model="llama3-70b-8192",
    messages=[{"role": "user",
               "content": "What's the purpose of Generative AI?"}],
)

print(chat_complete.choices[0].message.content)
The primary purpose of generative AI is to create new, original, and often realistic data or content, such as images, videos, music, text, or speeches, that are similar to those created by humans. Generative AI models are designed to generate new data samples that are indistinguishable from real-world data, allowing for a wide range of applications and possibilities. Some of the main purposes of generative AI include:

1. **Data augmentation**: Generating new data to augment existing datasets, improving machine learning model performance, and reducing overfitting.
2. **Content creation**: Automating the creation of content, such as music, videos, or articles, that can be used for entertainment, education, or marketing purposes.
3. **Simulation and modeling**: Generating synthetic data to simulate real-world scenarios, allowing for experimentation, testing, and analysis in various fields, such as healthcare, finance, or climate modeling.
4. **Personalization**: Creating personalized content, recommendations, or experiences tailored to individual users' preferences and behaviors.
5. **Creative assistance**: Providing tools and inspiration for human creators, such as artists, writers, or musicians, to aid in their creative processes.
6. **Synthetic data generation**: Generating realistic synthetic data to protect sensitive information, such as personal data or confidential business data.
7. **Research and development**: Facilitating research in various domains, such as computer vision, natural language processing, or robotics, by generating new data or scenarios.
8. **Entertainment and leisure**: Creating engaging and interactive experiences, such as games, chatbots, or interactive stories.
9. **Education and training**: Generating educational content, such as interactive tutorials, virtual labs, or personalized learning materials.
10. **Healthcare and biomedical applications**: Generating synthetic medical images, patient data, or clinical trials data to aid in disease diagnosis, treatment planning, and drug discovery.

Some of the key benefits of generative AI include:

* Increased efficiency and productivity
* Improved accuracy and realism
* Enhanced creativity and inspiration
* Accelerated research and development
* Personalized experiences and services
* Cost savings and reduced data collection costs

However, it's essential to address the potential risks and concerns associated with generative AI, such as:

* Misuse and abuse of generated content
* Bias and unfairness in AI-generated data
* Privacy and security concerns
* Job displacement and labor market impacts

As generative AI continues to evolve, it's crucial to develop and implement responsible AI practices, ensuring that these technologies are used for the betterment of society and humanity.

With Portkey Client

from portkey_ai import Portkey

portkey = Portkey(
    api_key = userdata.get('PORTKEY_API_KEY'),   # replace with your Portkey API key
    virtual_key= "groq-431005",   # replace with your virtual key for Groq AI
)
completion = portkey.chat.completions.create(
    messages= [{ "role": 'user', "content": 'Who are you?'}],
    model= 'llama3-70b-8192',
    max_tokens=250
)

print(completion)
{
    "id": "chatcmpl-8cec08e0-910e-4331-9c4b-f675d9923371",
    "choices": [
        {
            "finish_reason": "stop",
            "index": 0,
            "logprobs": null,
            "message": {
                "content": "I am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation and answer questions to the best of my knowledge. I can discuss a wide range of topics, from science and history to entertainment and culture. I can even generate creative content, such as stories or poems.\n\nMy primary function is to assist and provide helpful responses to your queries. I'm constantly learning and improving my responses based on the interactions I have with users like you, so please bear with me if I make any mistakes.\n\nFeel free to ask me anything, and I'll do my best to provide a helpful and accurate response!",
                "role": "assistant",
                "function_call": null,
                "tool_calls": null
            }
        }
    ],
    "created": 1714136032,
    "model": "llama3-70b-8192",
    "object": "chat.completion",
    "system_fingerprint": null,
    "usage": {
        "prompt_tokens": 14,
        "completion_tokens": 147,
        "total_tokens": 161
    }
}

Observability with Portkey

By routing requests through Portkey you can track a number of metrics like - tokens used, latency, cost, etc.

Note: You can safely store your Groq API key in and access models using virtual key

Portkey
here
here